Identifying Roadblocks to Net Zero Legislation

Location of coal terminals in EU and share of coal transported/handled by the port in comparison to bulk goods, EU coal regions: opportunities and challenges ahead

Abstract

Our first use case is about identifying potential political roadblocks for climate policies. We are combining survey data about attitudes to climate change policies with socio-economic coal mining and and voting data. We examine the relationship between voter attitudes and economic dependency on coal mining. This project currently covers the entire European Union and the United Kingdom, and can be easily extended to at least half of the world’s countries.

In our use case we are merging data about Europe’s coal regions, harmonized surveys about the acceptance of climate policies, and socio-economic data. While the work starts out from existing European research, our retroharmonize survey harmonization solution, our regions sub-national boundary harmonization solution and iotables allows us to connect open data and open knowledge from other coal regions of the world, for example, from the Appalachian economy.

Policy Context

The Just Transition Platform aims to assist EU countries and regions to unlock the support available through the Just Transition Mechanism. It builds on and expands the work of the existing Initiative for Coal Regions in Transition, which already supports fossil fuel producing regions across the EU in achieving a just transition through tailored, needs-oriented assistance and capacity-building.

The Initiative has a secretariat that is co-run by Ecorys, Climate Strategies, ICLEI Europe, and the Wuppertal Institute for Climate. While the initiative is an EU project, it cooperates with other similar initiatives, for example, with the Coalfield Development social enterprise in the Appalachian economy.

Data Sources

  • Coal regions: Our starting point is the EU coal regions: opportunities and challenges ahead publication Joint Research Centre (JRC), the European Commission’s science and knowledge service. This publication maps Europe’s coal dependent energy and transport infrastructure, and regions that depend on coal-related jobs.

  • Harmonized Survey Data: The dataset of the Eurobarometer 91.3 (April 2019) harmonized survey. Our transition policy variable is the four-level agreement with the statement More public financial support should be given to the transition to clean energies even if it means subsidies to fossil fuels should be reduced (EN) and Davantage de soutien financier public devrait être donné à la transition vers les énergies propres même si cela signifie que les subventions aux énergies fossiles devraient être réduites (FR) which is then translated to the language use of all participating country.

  • Environmental Variables: We used data on pm and SO2 polution measured by participating stations in the European Environmental Agency’s monitoring program. The station locations were mapped by Milos to the NUTS sub-national regions.

Exploratory Data Analysis

Our coal-dependency dummy variable is base on the policy document Coal regions in transition.

“Coal regions in the model.

readRDS(file.path("data", "coal_regions.rds"))

## # A tibble: 253 x 5
##    country_code_is~ region_nuts_nam~ region_nuts_cod~ coal_region is_coal_region
##    <chr>            <fct>            <chr>            <chr>                <dbl>
##  1 BE               Brussels hoofds~ BE10             <NA>                     0
##  2 BE               Liege            BE33             <NA>                     0
##  3 BE               Brabant Wallon   BE31             <NA>                     0
##  4 BE               Antwerpen        BE21             <NA>                     0
##  5 BE               Limburg [BE]     BE22             <NA>                     0
##  6 BE               Oost-Vlaanderen  BE23             <NA>                     0
##  7 BE               Vlaams Brabant   BE24             <NA>                     0
##  8 BE               West-Vlaanderen  BE25             <NA>                     0
##  9 BE               Hainaut          BE32             <NA>                     0
## 10 BE               Namur            BE35             <NA>                     0
## # ... with 243 more rows

Our exploratory data analysis shows that respondent in 2019, agreement with the policy measure significantly differed among EU member states and regions.

transition_policy <- eb19_raw %>%
  rowid_to_column() %>%
  mutate ( transition_policy = normalize_text(transition_policy)) %>%
  fastDummies::dummy_cols(select_columns = 'transition_policy') %>%
  mutate ( transition_policy_agree = case_when(
    transition_policy_totally_agree + transition_policy_tend_to_agree > 0 ~ 1, 
    TRUE ~ 0
  )) %>%
  mutate ( transition_policy_disagree = case_when(
    transition_policy_totally_disagree + transition_policy_tend_to_disagree > 0 ~ 1, 
    TRUE ~ 0
  )) 

eb19_df  <- transition_policy %>% 
  left_join ( air_pollutants, by = 'region_nuts_codes' ) %>%
  mutate ( is_poland = ifelse ( country_code == "PL", 1, 0))

Preliminary Results

Significantly more people agree where

  • there are more polutants
  • who are younger
  • where people are more educated

Significantly less people agree

  • in rural areas
  • where more people are older
  • where more people are less educated
  • in less polluted areas
  • in coal regions

A simple model run:

c("transition_policy_totally_agree" , "pm10", "so2", "age_exact", "is_highly_educated" , "is_rural")

## [1] "transition_policy_totally_agree" "pm10"                           
## [3] "so2"                             "age_exact"                      
## [5] "is_highly_educated"              "is_rural"

summary( glm ( transition_policy_totally_agree ~ pm10 + so2 + 
                 age_exact +
                 is_highly_educated + is_rural + is_coal_region +
                 country_code, 
               data = eb19_df, 
               family = binomial ))

## 
## Call:
## glm(formula = transition_policy_totally_agree ~ pm10 + so2 + 
##     age_exact + is_highly_educated + is_rural + is_coal_region + 
##     country_code, family = binomial, data = eb19_df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7690  -1.0253  -0.8165   1.2264   1.9085  
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        -0.1975096  0.0921551  -2.143 0.032095 *  
## pm10                0.0068505  0.0017445   3.927 8.60e-05 ***
## so2                 0.1381994  0.0405867   3.405 0.000662 ***
## age_exact          -0.0075018  0.0007873  -9.529  < 2e-16 ***
## is_highly_educated  0.2953905  0.0311127   9.494  < 2e-16 ***
## is_rural           -0.1277983  0.0313321  -4.079 4.53e-05 ***
## is_coal_region     -0.2624005  0.0640233  -4.099 4.16e-05 ***
## country_codeBE     -0.3290891  0.0916117  -3.592 0.000328 ***
## country_codeBG     -0.6470116  0.1125114  -5.751 8.89e-09 ***
## country_codeCY      0.8471483  0.1273306   6.653 2.87e-11 ***
## country_codeCZ     -0.5754008  0.0965974  -5.957 2.57e-09 ***
## country_codeDE      0.0106430  0.0856322   0.124 0.901088    
## country_codeDK      0.0577724  0.0925391   0.624 0.532429    
## country_codeEE     -0.8041188  0.0989047  -8.130 4.28e-16 ***
## country_codeES      1.1266903  0.0941495  11.967  < 2e-16 ***
## country_codeFI     -0.2617501  0.0946837  -2.764 0.005702 ** 
## country_codeFR      0.0130239  0.1639339   0.079 0.936678    
## country_codeGB      0.2454631  0.0891845   2.752 0.005918 ** 
## country_codeGR      0.2169278  0.1209199   1.794 0.072816 .  
## country_codeHR     -0.1632727  0.1001563  -1.630 0.103064    
## country_codeHU      0.5779928  0.1020987   5.661 1.50e-08 ***
## country_codeIT     -0.1427249  0.0940144  -1.518 0.128985    
## country_codeLU     -0.3111627  0.1140426  -2.728 0.006363 ** 
## country_codeLV     -0.6246590  0.0963526  -6.483 8.99e-11 ***
## country_codeMT      0.3303363  0.1228611   2.689 0.007173 ** 
## country_codeNL      0.1707080  0.0902189   1.892 0.058470 .  
## country_codePL     -0.2843198  0.1228657  -2.314 0.020664 *  
## country_codePT      0.1447295  0.0899079   1.610 0.107452    
## country_codeRO     -0.0479674  0.0930433  -0.516 0.606177    
## country_codeSE      0.4865939  0.0922486   5.275 1.33e-07 ***
## country_codeSK     -0.2427307  0.0964652  -2.516 0.011861 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 30568  on 22401  degrees of freedom
## Residual deviance: 29313  on 22371  degrees of freedom
##   (5253 observations deleted due to missingness)
## AIC: 29375
## 
## Number of Fisher Scoring iterations: 4

summary( glm ( transition_policy_agree ~ pm10 + so2 + age_exact +
                 is_highly_educated + is_rural, 
               data = eb19_df, 
               family = binomial ))

## 
## Call:
## glm(formula = transition_policy_agree ~ pm10 + so2 + age_exact + 
##     is_highly_educated + is_rural, family = binomial, data = eb19_df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1970   0.5035   0.5803   0.6495   0.8465  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         1.807823   0.079297  22.798  < 2e-16 ***
## pm10                0.005092   0.001239   4.108 3.99e-05 ***
## so2                 0.003274   0.051410   0.064  0.94922    
## age_exact          -0.009781   0.000988  -9.900  < 2e-16 ***
## is_highly_educated  0.396743   0.039735   9.985  < 2e-16 ***
## is_rural           -0.107448   0.037953  -2.831  0.00464 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 20488  on 22401  degrees of freedom
## Residual deviance: 20250  on 22396  degrees of freedom
##   (5253 observations deleted due to missingness)
## AIC: 20262
## 
## Number of Fisher Scoring iterations: 4

Next Steps

  • After careful documentation, we will very soon publish all the processed, clean datasets on the EU Zenodo repository with clear digital object identification and versioning.

  • We will seek contact with the Secretariat of the Initiative for Coal Regions in Transition to process all the data annexes in the EU coal regions: opportunities and challenges ahead report.

  • With our volunteers we want to include coal regions from the United States, Latin America, Australia, Africa first – because we have harmonized survey results – and gradually add the rest of the world.

  • We will ask political scientists and policy researchers to interpret our findings.

Economy Data Observatory
Economy Data Observatory
Automated Data Observatory

A fully automated, open source, open data observatory that produces new indicators from open data sources and experimental big data sources, with authoritative copies and a modern API.

Daniel Antal
Daniel Antal
Contributor, open-source statistical software

My research interests include reproducible social science, economics and finance.